本篇博客将详细探讨DStream模板下的RDD是如何被创建,然后被执行的。在开始叙述之前,先来思考几个问题,本篇文章也就是基于此问题构建的。 

1. RDD是谁产生的? 
2. 如何产生RDD? 
带着这两个问题开启我们的探索之旅。

DStream是RDD的模板,每隔一个Batch Interval会根据DStream模板生成一个对应的RDD,然后将RDD存储到DStream中的generatedRDDs数据结构中,下面是存储结构格式。

// RDDs generated, marked as private[streaming] so that testsuites can access it @transient private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()

1、简单的WordCount程序

object WordCount {  def main(args:Array[String]): Unit ={
   val sparkConf = new SparkConf().setMaster("Master:7077").setAppName("WordCount")    val ssc = new StreamingContext(sparkConf,Seconds(10)) // Timer触发频率    val lines = ssc.socketTextStream("Master",9999) //接收数据    val words = lines.flatMap(_.split(" "))    val wordCounts = words.map(x => (x,1)).reduceByKey(_+_)    wordCounts.print()    ssc.start()    ssc.awaitTermination()  } }
首先我们先看看print方法,具体的代码如下:
 
/**  * Print the first num elements of each RDD generated in this DStream. This is an output  * operator, so this DStream will be registered as an output stream and there materialized.  */ def print(num: Int): Unit = ssc.withScope {
 def foreachFunc: (RDD[T], Time) => Unit = {
   (rdd: RDD[T], time: Time) => {
     val firstNum = rdd.take(num + 1)      // scalastyle:off println      println("-------------------------------------------")      println("Time: " + time)      println("-------------------------------------------")      firstNum.take(num).foreach(println)      if (firstNum.length > num) println("...")      println()      // scalastyle:on println    }  }  foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false) }

首先定义了一个函数,该函数用来从RDD中取出前几条数据,并打印出结果与时间等,后面会调用foreachRDD函数。

private def foreachRDD(     foreachFunc: (RDD[T], Time) => Unit,     displayInnerRDDOps: Boolean): Unit = {
   new ForEachDStream(this,context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register() }

/**  * Register this streaming as an output stream. This would ensure that RDDs of this  * DStream will be generated.  */ private[streaming] def register(): DStream[T] = {
 ssc.graph.addOutputStream(this)  this }

def addOutputStream(outputStream: DStream[_]) {
 this.synchronized {
   outputStream.setGraph(this)    outputStreams += outputStream  }

在foreachRDD中new出了一个ForEachDStream对象,并将这个注册给DStreamGraph,ForEachDStream对象也就是DStreamGraph中的outputStreams。

当每到达一个BatchInterval时候,就会调用DStreamingGraph中的generateJobs.

 
def generateJobs(time: Time): Seq[Job] = {
 logDebug("Generating jobs for time " + time)  val jobs = this.synchronized {
   outputStreams.flatMap { outputStream =>      val jobOption = outputStream.generateJob(time)      jobOption.foreach(_.setCallSite(outputStream.creationSite))      jobOption    }  }  logDebug("Generated " + jobs.length + " jobs for time " + time)  jobs }

这里就会调用outputStream的generateJob方法

 
private[streaming] def generateJob(time: Time): Option[Job] = {
 getOrCompute(time) match {
   case Some(rdd) => {
     val jobFunc = () => {
       val emptyFunc = { (iterator: Iterator[T]) => {} }        context.sparkContext.runJob(rdd, emptyFunc)      }      Some(new Job(time, jobFunc))    }    case None => None  } }

这里会调用getOrCompute(time)来产生新RDD,并将其存入到generatedRDDs中,整理的过程如下图:

参考博客:

备注:

1、DT大数据梦工厂微信公众号DT_Spark 

2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains